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Synthetic homotopy theory

As a first approximation consider the analogy:

synthetic geometry : analytic geometry

synthetic homotopy theory : classical homotopy theory

Spaces, points, paths, homotopies are basic notions given directly in
terms of the identity type. Sometimes this leads to new proofs.
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Continuity

It’s not a new idea to consider abstract homotopy theory: this goes back
at least 50 years:

Edgar Brown’s abstract homotopy theory (1965)

Quillen model categories (1967)

Kenneth Brown’s fibration categories (1973)

Waldhausen categories (1983)

Grothendieck’s derivators (1990)

etc.

In this way, HoTT is part of a long tradition in homotopy theory.

Homotopy type theory provides another way to do abstract homotopy
theory. It feels even more synthetic because the framework ensures that
everything is invariant under equivalence. This is new.



Synthetic homotopy theory in HoTT

Some have complained about the term synthetic homotopy theory for this
reason. Perhaps better would be type-theoretic homotopy theory or
univalent homotopy theory.

What we’ll do in this workshop is to see how this works for a few basic
results (kind of like browsing through Book 1 of Euclid’s Elements), and
along the way we’ll be acquainted with a key tool: higher inductive types.
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HoTT dictionary

Let us recall the basic dictionary of homotopy type theory:

A type space ∞-groupoid
a : A term point object
p : a =A b identification path arrow
f : A→ B function continuous map homomorphism
C : A→ Type dep. type fibration fibration
f : Π(x : A)C(x) dep. function section section
s : Σ(x : A)C(x) dep. pair point in total space



Truncation levels

Recall that a type A may be truncated at a finite level:

Level Predicate Name

−2 isContr(A) := Σ(x : A)Π(y : A)(x = y) contractible
−1 isProp(A) := Π(x, y : A)isContr(x = y) proposition
0 isSet(A) := Π(x, y : A)isProp(x = y) set
1 isGpd(A) := Π(x, y : A)isSet(x = y) groupoid

. . . . . . . . .
n + 1 isTruncn+1(A) := Π(x, y : A)isTruncn(x = y) n + 1-groupoid

These predicates are themselves propositions and we have the
equivalence

isProp(A) ' Π(x, y : A)(x = y)



Path induction

Recall that the identity types a = b, for a, b : A can be thought of as
inductively defined by an element idp : a = a.

The corresponding induction principle is called path induction: If
C : Π(x : A)((a = x)→ Type), and we have some c : C(a, idp), then we
have a section

J(C, c) : Π(x : A)(p : a = x). C(x, p)

We have J(C, c)(a, idp) = c.



Example

A fundamental example of a fibration is the path fibration: Given a type A
and a point a : A, have P : A→ Type with P(x) := (a = x).

Exercise: prove isContr(Σ(x : A)P(x)).

Center of contraction: 〈a, idp〉.

Use path induction to show 〈a, idp〉 = 〈b, p〉 for any b : A, p : a = b.
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Truncation

We need to know that there is a way for any A and n ≥ −2 to make a
“best approximation” ‖A‖n of A that is an n-truncated type. It comes with
a map |−|n : A→ ‖A‖n.

The universal property of the truncation is this: If B is any n-truncated
type, then the following map is an equivalence:

(‖A‖n → B)→ (A→ B)

g 7→ g ◦ |−|n

Later we’ll see how to construct ‖A‖n as a higher inductive type.
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The fundamental group

The fundamental group of a pointed space A, written π1(A, ?), has as
underlying set

π1(A, ?) := ‖Ω(A, ?)‖0,

where Ω(A, ?) := (? =A ?) is the loop space.

The group operation is path concatenation, inverses are given by path
reversal, and the neutral element is the reflexivity path.

We’re going to calculate the fundamental group of the circle S1.



The circle

We introduce the circle S1 as motivating example of a higher inductive
type. Recall two examples of ordinary inductive types:

The booleans B, generated by:

Two points true, false : B.

The natural numbers N, generated by:

A point 0 : N, and

a function S : N→N.

The circle is generated by:

A point base : S1, and

A path loop : base =S1 base.



The circle continued

Let’s see what the elimination principle for the circle should be:

We define f : B→ Z by recursion by giving f (true) : Z and
f (false) : Z.

We define f : N→ Z by recursion by giving f (0) : Z and for each
n : N, f (S n) : Z, assuming the value f (n) : Z known.

We define f : S1 → Z by recursion by giving f (base) : Z and
apf (loop), a path of type f (base) =Z f (base).



Dependent elimination

Induction principles not only tell us how to construction functions out of
an inductive type, they also tell us more generally how to construct
sections of fibrations over them.

We define a section f : Π(b : B)P(b) by induction by giving
f (true) : P(true) and f (false) : P(false).

We define f : Π(n : N)P(n) by induction by giving f (0) : P(0) and
for each n : N, f (S n) : P(S n), assuming the value f (n) : P(n)
known.

We define f : Π(x : S1)P(x) by induction by giving
f (base) : P(base) and apdf (loop), a dependent path (a pathover )

of type f (base) =P
loop f (base).



Fundamental group of the circle

We now prove that π1(S
1) ' Z. Define code : S1 → Type by recursion:

code(base) := Z

apcode(loop) := ua(succ)

(Note the use of univalence!)

We then give a fiber-wise equivalence
Π(x : S1)(code(x) ' (base = x)).

It’s possible to emulate the traditional proof in HoTT, proving that a
fiber-wise map gives an equivalence on total spaces:
Σ(x : S1)code(x) ' Σ(x : S1)(base = x) ' 1.



The encode-decode method

Here is a more type-theoretic proof: First define
encode : Π(x : S1)((base = x)→ code(x)) by

encode(x) := λp : base = x. transportcode(p, 0)

and decode : Π(x : S1)(code(x)→ (base = x)) by circle induction:

decode(base) := λz : Z. loopz

apddecode(loop) := ?

Need lemma: if B, C : A→ Type, p : a =A a′, f : B a→ C a,
g : B a′ → C a′ and Π(b : B a)(f b =C

p g (transportB(p, b))), then

f =λx:A. B x→C x
p g.
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The encode-decode method, cont.

Need to show for all z : Z: loopz =λx:S1 . base=x
loop loopz+1.

Need another lemma: if f , g : A→ B, p : a =A a′, q : f a = g a,
r : f a′ = g a′ and s fills a square:

f a g a

f a′ g a′,

q

apf p apg p

r

then q =
λx:A. f x=g x
p r.



The encode-decode method, cont.

Still need to show for all z : Z: loopz =λx:S1 . base=x
loop loopz+1. By the

lemma, it suffices to fill the square:

base base

base base

loopz

idp loop

loopz+1

This we can easily do. Thus we can define the function
decode : Π(x : S1)(code(x)→ (base = x)).

It remains to show that encode and decode are fiberwise mutually
inverse.



The encode-decode method, final slide

Lemma 1: For all x : S1 and p : base = x,
decode(x)(encode(x)(p)) = p.
Proof by path induction: decode(base)(encode(base)(idp)) =
decode(base)(0) = loop0 = idp.

Lemma 2: For all x : S1 and z : code(x), encode(x)(decode(x)(z)) = z.
Proof by circle induction: Suffices (since Z is a set) to do the base case:
encode(base)(decode(base)(z)) = transportcode(loopz, 0) = z (by
induction on z : Z). .

This completes the proof that for x : S1, code(x) ' (base = x). In
particular, Z ' (base = base). Hence also Z ' π1(S

1).



Outline

1 Synthetic Homotopy Theory

2 Truncation

3 The fundamental group of the circle

4 Higher inductive types

5 More homotopy theory

6 More HITs



Higher inductive types (HITs)

Having seen an example of a higher inductive type and how it used in
synthetic homotopy theory, let us look at more higher inductive types, and
make some general remarks.

A higher inductive type includes ordinary point constructors, but also
path constructors (with given source and target), and possibly higher
path constructors.

Path constructors give new elements of identity types (just like
univalence does).

The resulting type is a freely generated ∞-groupoid. But by
including higher path constructors we can impose “relations” (will
return to this).

If a path constructor has an argument of type A, then n-paths in A
give rise to n + 1-paths in the generated type.

I should note that we don’t have a general schema for HITs yet – but
we’re making progress



The pushout

Given f : C→ A and g : C→ B (forming a span), the pushout is a type D
fitting into a diagram:

C B

A D

f

g

inr

inl

It has point constructors inl and inr, and a path constructor

glue : Π(x : C)(inl(f x) = inr(g x)).

The non-dependent elimination principle is simply the universal property.



Elimination principle for pushouts

Let D be the pushout of the span consisting of f : C→ A and g : C→ B.
Let P : D→ Type be given. We can define a section s : Π(x : D)P(x) by
giving:

s(inl a) : P(inl a) for a : A

s(inr b) : P(inl b) for b : B

apds(glue(x)) : s(inl(f x)) =P
glue(x) s(inr(g x)) for x : C



A glimpse of the menagerie

Coequalizer Q, given f , g : A ⇒ B: point constructor q : B→ Q;
path constructor r : Π(x : A)(q(f (x)) = q(g(x))).

Interval I: point constructors 0, 1 : I;
path constructor seg : 0 = 1.

Suspension susp(A): point constructors N, S : susp(A);
path constructor merid : A→ N = S.

Join A ∗ B: point constructors inl : A→ A ∗ B, inr B→ A ∗ B
path constructor glue : Π(a : A)(b : B). inl a = inr b.

Torus T2: point constructor base : T2;
path constructors p, q : base = base;
2-path constructor: s : p · q = q · p

These already suffice to do a lot of homotopy theory. They are all
definable using pushouts (and standard type operations).

Exercise: Prove that I is contractible.



A glimpse of the menagerie

Coequalizer Q, given f , g : A ⇒ B: point constructor q : B→ Q;
path constructor r : Π(x : A)(q(f (x)) = q(g(x))).

Interval I: point constructors 0, 1 : I;
path constructor seg : 0 = 1.

Suspension susp(A): point constructors N, S : susp(A);
path constructor merid : A→ N = S.

Join A ∗ B: point constructors inl : A→ A ∗ B, inr B→ A ∗ B
path constructor glue : Π(a : A)(b : B). inl a = inr b.

Torus T2: point constructor base : T2;
path constructors p, q : base = base;
2-path constructor: s : p · q = q · p

These already suffice to do a lot of homotopy theory. They are all
definable using pushouts (and standard type operations).

Exercise: Prove that I is contractible.



Hubs and spokes

The torus used a 2-path constructor. It turns out that higher path
constructors can always be avoided via the hubs-and-spokes method.
For T2, instead of the 2-path constructor we could add another point
constructor h : T2 (the hub) and a path constructor s : Π(x : S1)(f x = h),
where f : S1 → T2� is defined by circle-induction, mapping base to base
and loop to p · q · p−1 · q−1. (Drawing on blackboard)

This is exactly the same principle as when we glue in a higher cell along
a map f using a pushout:

Sn X

1 X′

f



Truncations

We return to constructing the truncations ‖A‖n for n ≥ −2.
Let ‖A‖−2 := 1.

The propositional truncation ‖A‖ = ‖A‖−1 is the higher inductive type
with: point constructor |−| : A→ ‖A‖; and
path constructor p : Π(x, y : ‖A‖)(x = y).

‖A‖ is freely generated by a function from A and the fact that it should be
a proposition.

This is our first example of a recursive HIT. The universal property follows
from the recursion principle (exercise!).



Truncations, continued

Fact: A is n-truncated iff Ωn+1(A, a) ( ' Map∗(S
n+1, (A, a))) is

contractible for all a : A.

This suggests the following description of ‖A‖n as a HIT, generated by

a function |−| : A→ ‖A‖n; and

for each r : Sn+1 → ‖A‖n, a hub point h(r) : ‖A‖n; and

for each r : Sn+1 → ‖A‖n, and each x : Sn+1, a spoke
sr(x) : h(x) = r(x).

Fact: This gives the right universal property (cf. HoTT book).



Truncations, reduced

It turns out that the truncations are definable in terms of pushouts!

For propositional truncation, this is due to Floris van Doorn and
Nicolai Kraus.

For higher truncations, this is due to Egbert Rijke.



Quotients

Suppose A : Set and R : A→ A→ Prop. Then we can form the quotient
A/R as the set-coequalizer of the two projections

(*) Σ(a, b : A)R(a, b) ⇒ A.

(This is the set-truncation of the type-coequalizer.)

In fact it can be useful in the general case of A : Type and
R : A→ A→ Type to form the coequalizer (*), as a type-quotient. This
is a built-in HIT in the Lean proof assistant, generated by

a function q : A→ A/R;

for each a, b : A and each r : R(a, b) a path e(r) : q(a) = q(b).



Free algebras

Higher inductive types can also be used to construct free algebras. For
instance, if A : Set, we can construct the free group on A, F(A), as
generated by:

A function η : A→ F(A);

A function m : F(A)× F(A)→ F(A);

An element e : F(A);

A function i : F(A)→ F(A);

For each x, y, z : F(A) a path m(x, m(y, z)) = m(m(x, y), z);

For each x : F(A) paths m(x, e) = x = m(e, x);

For each x : F(A) paths m(x, i(x)) = e = m(i(x), x);

The 0-truncation constructor.
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Higher homotopy groups

We can define the higher homotopy groups of a pointed type A as
πn(A, ?) := ‖Ωn(A, ?)‖0 = π1(Ωn−1(A, ?)). For n ≥ 2, this is an
abelian group (Eckmann-Hilton argument).

S0 S1 S2 S3 S4 S5 S6 S7 S8

π1 0 Z 0 0 0 0 0 0 0

π2 0 0 Z 0 0 0 0 0 0

π3 0 0 Z Z 0 0 0 0 0

π4 0 0 Z2 Z2 Z 0 0 0 0

π5 0 0 Z2 Z2 Z2 Z 0 0 0

π6 0 0 Z12 Z12 Z2 Z2 Z 0 0

π7 0 0 Z2 Z2 Z×Z12 Z2 Z2 Z 0

π8 0 0 Z2 Z2 Z2
2 Z24 Z2 Z2 Z



Connectedness

A type A may be more or less connected:

isConnn(A) := isContr(‖A‖n).

−1-connected=inhabited, 0-connected=connected,
1-connected=simply-connected.

We can prove that suspension increases connectivity:

isConnn(A)→ isConnn+1(susp A)

Thus, the n-sphere Sn is n− 1-connected (what is the base case?).



Truncatedness, connectedness and homotopy groups

Lemma 1: If A is n-truncated and a : A, then πk(A, a) = 1 for k > n.

Lemma 2: If A is n-connected and a : A, then πk(A, a) = 1 for k ≤ n.

Corollary: πk(S
n) = 1 for k < n.



Classifying types of groups

Recall that we can think of types as ∞-groupoids. A pointed, connected
type represents an ∞-group.

What is the connection between discrete groups and 1-truncated
∞-groups?

Answer: Given BG, a pointed, connected, 1-truncated type, G := ΩBG is
a discrete group.

Conversely: Given a discrete group G, we can construct a pointed,
connected, 1-truncated type BG with G = ΩBG as a HIT!
What are the constructors?

The same procedure produces a univalent category given a
set-presented precategory.



Covering spaces

In traditional homotopy theory it is relatively complicated to define
covering spaces (e.g., using local homeomorphisms).

In HoTT, a covering space of A is simply a map C : A→ Set, where
Set := Σ(X : Type)isSet(X).

Given C : A→ Set, we get for any a : A a π1(A, a)-set (using that Set is
1-truncated. Favonia showed that you can go back: there is an
equivalence between π1(A, a)-sets and A-covering spaces when A is
connected (recovering a classical theorem).



Infinity group actions

Given a pointed connected type BG, thought of as an ∞-group G, an
action of G is just a dependent type X : BG→ Type.

The type acted on is the fiber X(?), and the action is by transport. The
quotient is just the dependent sum Σ(x : BG)X(x)!

The path fibration BG→ Type, λx. ? = x corresponds to the right action
of G on itself. The quotient is contractible.



Projective spaces

The real projective spaces RPn are traditionally quotients of Sn by the
antipodal map.

Using the HIT BC2 corresponding to the 2-element group C2, note that
the iterated joins Mn : BC2 → Type, λx. (? = x)∗(n+1), are the antipodal
actions on the spheres Sn, so we can define RPn := Σ(x : BC2)Mn(x).

A similar construction defined complex projective spaces.

(This construction is due to Egbert Rijke and myself.)



Eilenberg-MacLane spaces and cohomology

If G is abelian, we can form higher versions of BG, usually called K(G, n).
These are (n− 1)-connected, n-truncated types with πn(K(G, n)) = G.

K(G, 0) := G and K(G, 1) := BG.

Cohomology is now simply defined as Hn(A; G) := ‖A→ K(G, n)‖0.
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The Cauchy reals

In HoTT we can construct the Cauchy-complete reals (without assuming
dependent choice), as follows:

rat : Q→ R

lim : (x : Q+ → R)→ (∀δ, ε : Q+, xδ ∼δ+ε xε)→ R

eq : (u, v : R)→ (∀ε : Q+, u ∼ε v)→ u =R v

eliding clauses for ∼ε, and set truncation.

Complicated induction principle!



The cumulative set hierarchy

In HoTT, we can construct the cumulative hierarchy V as a HIT
generated by:

set : (A : Type)→ (f : A→ V)→ V

eq : (A, B : Type)→ (f : A→ V)→ (g : B→ V)

→ (∀a : A, ∃b : B, f a =V g b)→ (∀b : B, ∃a : A, f a =V g b)

→ set(A, f ) =V set(B, g)

plus a constructor making V 0-truncated.

Again, complicated induction principle!



Where to go from here: HoTT book and . . .

Licata-Shulman, Calculating the Fundamental Group of the Circle in
Homotopy Type Theory, 2013.

Licata-Brunerie, πn(Sn) in Homotopy Type Theory, 2013.

Favonia-Harper, Covering Spaces in Homotopy Type Theory, 2014.

Licata-Finster, Eilenberg-MacLane Spaces in Homotopy Type
Theory, 2014.

Cavallo, Synthetic Cohomology in Homotopy Type Theory,
MSc thesis, 2015.

Favonia-Finster-Licata-Lumsdaine, A mechanization of the
Blakers-Massey connectivity theorem in Homotopy Type Theory,
preprint, 2016.

Brunerie, On the homotopy groups of spheres in homotopy type
theory, PhD thesis, 2016.

Lumsdaine-Shulman, Semantics and syntax of higher inductive
types, slides, 2016.

you?
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